Breast augmentation continues to be one of the most frequently performed aesthetic surgical procedures, with 286,724 breast augmentations performed in 2012. There are many surgical approaches and different implants that are available. Substantial clinical data exist regarding breast augmentation to assist with evaluating the various options. The purpose of this article is to provide a summary of the best available evidence on augmentation mammoplasty. When combined with clinical expertise, this evidence will assist the plastic surgeon in clinical decision making to provide the patient with a safer and better aesthetic result.

EVIDENCE ON PREOPERATIVE ASSESSMENT

Despite the multitude of publications over the past half a century, few describe the process of decision making in breast augmentation. Tebbetts and Adams described a decision support process that enables surgeons to address all preoperative assessment and operative planning decisions by prioritizing five critical decisions in breast augmentation: (1) optimal soft-tissue coverage/pocket location for the implant; (2) implant volume (weight); (3) implant type, size, and dimensions; (4) optimal location for the infra-mammary fold; and (5) incision location (Reference 3, Level of Evidence: Therapeutic, III). This “high five” system was developed based on analyzing data from more than 2300 breast augmentations planned using the TEPID system.

Choudry and Kim surveyed current preferences of plastic surgeons regarding preoperative assessment and its effect on clinical outcomes in primary breast augmentation. Breast base diameter and implant volume were the two most important considerations in choosing an implant for breast augmentation. Reported reoperation rates for size change were significantly lower for surgeons who regarded breast base diameter as more vital than those who valued implant volume more.

EVIDENCE ON ANTIBIOTICS

Adams et al. performed a retrospective review of 335 patients that underwent aesthetic and reconstructive breast implant procedures using pocket irrigation with triple antibiotic solution (including bacitracin, cephalazolin, gentamicin), and reported a 1.8 percent capsular contracture rate for patients undergoing breast augmentation, which was lower than previously reported rates. They concluded that the use of triple antibiotic solution is associated with a low capsular contracture rate and recommended use of this technique.
Hardwicke et al. published a systematic review to...operative prophylactic antibiotics for either pri...pared patients who received 3 days of postoperative...antibiotics and those who did not. They concluded...there was no reduction in infection, capsular contracture after breast augmentation. Other evidence concerning incidence of capsular contracture or...A meta-analysis of surgical-site infection incidence...of intravenous antibiotics. Mirzabeigi et al. performed a retrospective review of 605 implants used in cosmetic breast augmentation. They compared patients who received 3 days of postoperative antibiotics and those who did not. They concluded that there was no reduction in infection, capsular contracture, or total complication rate with postoperative prophylactic antibiotics for either primary or secondary cosmetic breast augmentation.

With regard to the effects of pocket irrigation with antibiotics on capsular contracture rates, there is significant experimental and clinical evidence that biofilm is a significant cause in the development of capsular contracture. Over the past 15 years, with increased recognition of this relationship and use of interventions such as antibiotic pocket irrigation, there has been a marked decrease in the reported rates of capsular contracture after breast augmentation. Other measures such as the use of funnels for insertion and nipple shields have been proposed to prevent contamination of the implant.

EVIDENCE ON SURGICAL APPROACH

A multitude of surgical approaches for breast augmentation have been described. Surgeon preference along with patient characteristics and wishes seem to be largely the deciding factors in treatment planning. Many published articles include data collected in a retrospective manner or opinions that are based on anecdotal experiences of the authors. Experiences with inframammary, transaxillary, and periareolar incision placement have been reported. With respect to implant location, experiences with subglandular, subfascial, submuscular, dual plane, and muscle-splitting biplane have been reported. Outcomes with respect to safety and complication rates seem to be more objectively measured than aesthetic results. A review of comparative studies for incision placement and implant location is presented.

Incision Placement

Momeni et al. compared 78 patients that underwent breast augmentation through either an endoscopic transaxillary or inframammary approach. The complication rate was low for both groups, but patient satisfaction was higher in the transaxillary incision group, and they felt that this approach was useful for patients that preferred to have the incision at a distant site. Wiener retrospectively reviewed the incidence of capsular contracture for breast augmentations performed through a periareolar incision versus an inframammary incision and found that the capsular contracture rate was significantly higher using a periareolar incision. Jacobson et al. conducted a retrospective review of 183 patients that underwent breast augmentation and found that transaxillary incision had the highest incidence of capsular contracture followed by periareolar and inframammary incisions. Stutman et al. retrospectively reviewed 619 patients who underwent breast augmentation to examine the relationship of postoperative complications to incision. Postoperative complications including capsular contracture were not associated with any particular incision. Reoperations were significantly higher with inframammary incisions; however, these were for size/style change, asymmetry, and ptosis.

Okwueze et al. studied 33 patients after breast augmentation through both subjective questionnaires and objective sensory measurements to...
evaluate changes in breast sensation between inframammary and periareolar incisions. They found that the inferior region of the breast had significantly poorer sensitivity thresholds than the periareolar incision at 6-month follow-up and concluded that the periareolar incision may produce less sensory loss in the lower pole of the breast. However, Mofid et al.57 evaluated 20 women that had breast augmentation through either inframammary or periareolar incisions and found no difference in sensory outcomes. Araco et al.58 retrospectively evaluated 1222 patients for risk factors associated with alterations of nipple-areola complex sensitivity after breast augmentation. They found that, compared with an inframammary incision, a periareolar incision increased the risk of nipple-areola complex sensitivity alterations almost threefold and the risk of areolar pain by more than threefold.

Implant Location

A meta-analysis by Barnsley et al.59 examining the effect of texturization on capsular contracture noted the benefit of texturization on reducing the capsular contracture rate in the subglandular location. Texturization did appear to confer a protective effect in the submuscular location (Level of Evidence: Therapeutic, II). However, this subgroup consisted of a single study, which was dramatically underpowered. Data examined in a systematic review by Schaub et al.60 loosely supported that implants in the submuscular location have a lower capsular contracture rate.

Strasser61 retrospectively reviewed 100 patients with subglandular implants and 100 with submuscular implants. Submuscular location provided better concealment of upper pole rippling than subglandular augmentation but had higher rates of muscle contraction–induced deformities and implant displacement; capsular contracture occurred in both locations. Pereira and Sterodimas62 performed a prospective study to compare outcomes following transaxillary breast augmentation using round, textured, silicone implants in the subglandular (18 patients), subfascial (18 patients), and submuscular planes (17 patients). Other than three patients with mild distortion of the implants during pectoral contracture, patients had similar rates of satisfaction independent of the implant location. Brown63 retrospectively compared 200 subfascial implants with 83 subglandular implants and found no difference in complication rate or patient satisfaction. Tebbetts50 described a dual-plane approach in 468 patients that attempts to make use of the benefits of both subglandular and submuscular planes while minimizing the potential risks of each. Three variations of the dual-plane approach were described to address the following: I, most routine breasts; II, breasts with mobile parenchyma–muscle interface; and III, glandular ptotic and constricted lower pole of breasts.

EVIDENCE ON IMPLANT SELECTION

From 1992 to 2006, the U.S. Food and Drug Administration restricted the use of silicone implants for breast augmentation, making saline implants the only approved devices for breast augmentation.64 Between 2006 and 2012, the U.S. Food and Drug Administration approved three premarket approval applications for silicone gel–filled implants produced by Allergan (Irvine, Calif.), Mentor (Santa Barbara, Calif.), and Sientra (Santa Barbara, Calif.). In 2013, Allergan also received approval for the Style 410 implant, which uses silicone gel with higher cohesivity compared with their previously approved implants. There are several key considerations when choosing an appropriate breast implant that warrant discussion. Several authors have published systematic reviews and meta-analyses examining the effect of implant characteristics on outcomes after breast augmentation.

Cunningham et al.67 and Walker et al.68 published outcomes data for saline-filled implants as part of the premarket approval process. Allergan,69–71 Mentor,72–75 and Sientra76 have ongoing premarket approval studies for silicone gel–filled implants with published follow-up data between 5 and 6 years. In addition, there have been several other large studies published reporting outcomes for these implants.77–89 These studies and key complication rates including capsular contracture, implant rupture/deflation, and reoperation are summarized in Table 1. Data reflecting primary breast augmentation are summarized, but in some studies, these data are not presented separately. Capsular contracture rates range from 0 to over 20 percent, with average follow-up as long as 13 years, and appear independent of the type of implant fill. Rupture/deflation rates are consistently low for all implants. Reoperation rates range between 0 and 36 percent and appear to increase with longer follow-up. Many of these studies include heterogeneous data sets representing results from multiple surgeons, a variety of surgical approaches, and significant differences in other variables such as the use of pocket irrigation, which can significantly affect certain outcomes. In addition,
the premarket approval studies from the various manufacturers cannot be compared on a valid scientific basis because comparative patient cohorts were not established. Furthermore, many studies examining specific implants report outcome measures combining both aesthetic and reconstructive in addition to primary and revision patients. However, key complication rates are significantly higher in revision and reconstructive patients; thus, these outcomes are likely not a true reflection of primary breast augmentation.6,69–76

Saline or Silicone Gel Implant Fill

The effect of implant fill material has been one of the most extensively researched and discussed characteristics of breast implants. El-Shiekh et al.66 performed a meta-analysis to examine the effect of saline and silicone implants on the rate of capsular contracture. Three of the four comparative studies69,90–93 included reported a higher rate of capsular contracture in patients that had silicone implants. However, the scientific quality of the comparative studies was poor, and more recent studies with silicone implants report lower rates of capsular contracture than in the past. A systematic review by Schaub et al.60 examined the effect of saline versus silicone implants on capsular contracture. They concluded that there is a lack of current prospective data comparing saline and silicone implants in the literature. Rohrich and Reece94 highlighted several practical benefits of saline implants, including shorter length of incision, easier detection of saline implant deflation compared with rupture of silicone gel implants, easier revision surgery, and lower implant cost (Therapeutic: Level V Evidence).

Smooth or Textured Surface Implant Shell

Barnsley et al.59 performed a meta-analysis of randomized controlled trials to evaluate the effect of texturization on capsular contracture. Seven studies were included in the metaanalysis, and this indicated a protective effect for surface texturing on the rate of capsular contracture. Several subgroups were also examined, and submuscular placement was the only subgroup in which significance was not achieved. They concluded that textured implants reduce the rate of capsular contracture. Wong et al.65 performed a meta-analysis to examine the effect of texturization in the subglandular position (Level of Evidence: Therapeutic, II). Their meta-analysis included six prospective, randomized, controlled trials and suggested that implant texturization reduces capsular contracture in subglandular breast augmentation. Data examined in the systematic review by Schaub et al.69 loosely supported that textured implants have a tendency for less capsular contracture. However, texturization may predispose to the formation of double capsule and associated problems such as late seroma, although the exact relationship remains unclear.89,95–97

Round or Anatomical Implant Shape

Bronz98 compared the results of subglandular breast augmentation between anatomically shaped and round silicone implants. It was almost impossible to distinguish between the two types of implants on photographic evaluation. Friedman et al.99 performed a double-blind comparative study to evaluate the appearance of anatomically shaped and round silicone implants. Both female lay respondents and male plastic surgeons were asked to rate photographs of patients in each group. With respect to breast beauty, both respondent categories scored patients with round and anatomically shaped implants similarly; however, with regard to naturalness and upper pole assessment, both groups scored patients with round implants significantly higher. The implant type was correctly identified in 55 percent of cases. The authors concluded that in the hands of an experienced surgeon who takes all soft-tissue variables into consideration, the aesthetic result may not be differentiable when using round versus anatomically shaped implants in well-selected patients.

Malrotation is defined as rotation of an anatomically shaped implant around one or more axes that changes the implant orientation that was chosen at the time of surgery. Baek described his experience with anatomical saline implants in both the subglandular and submuscular positions.100 The risk of malrotation was estimated to be at least 14 percent. Schots et al.101 reported a series of 73 patients that underwent subglandular breast augmentation with Natrelle Style 510 anatomically shaped dual cohesive silicone gel implants. Twelve patients self-reported unilateral malrotation of an implant; seven patients required surgery. The authors discontinued using the Style 510 implant for primary breast augmentations. Lista et al.89 published a retrospective review of 440 consecutive patients that underwent subglandular breast augmentation with Allergan Style 410 implants (Level of Evidence: Therapeutic, IV). Malrotation occurred in 5.2 percent of patients. The initial management involved manual repositioning of the implant followed by the use of a tight-fitting bra for 6 weeks. Of 25 patients that experienced malrotation, four ultimately required reoperation.
<table>
<thead>
<tr>
<th>Reference</th>
<th>Study Design</th>
<th>Indication</th>
<th>Device</th>
<th>Implant Fill</th>
<th>No. of Patients</th>
<th>Length of Follow-Up</th>
<th>Capsular Contracture Rate (%) (Grade)</th>
<th>Implant Deflation/Rupture Rate (%)</th>
<th>Reoperation Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cunningham et al., 2000</td>
<td>Retrospective</td>
<td>98.9% implants were for breast augmentation</td>
<td>Various manufacturers</td>
<td>Saline</td>
<td>450</td>
<td>13 yr (9.8–20.0 yr)</td>
<td>8.4 (III/IV physician classified)</td>
<td>5.8 (excluding Surgitek implants because of higher deflation rate)</td>
<td>25.8</td>
</tr>
<tr>
<td>Brown et al., 2005</td>
<td>Retrospective</td>
<td>Breast augmentation data extracted</td>
<td>Allergan Style 410 Silicone</td>
<td>Silicone</td>
<td>118</td>
<td>21 mo (16–36 mo)</td>
<td>0.0 (III/IV)</td>
<td>0.0</td>
<td>1.7</td>
</tr>
<tr>
<td>Hedén et al., 2005</td>
<td>Retrospective</td>
<td>Breast augmentation data extracted</td>
<td>Allergan Style 410 Silicone</td>
<td>Silicone</td>
<td>124</td>
<td>6 years (5–9 yr)</td>
<td>5.6 (III/IV all indications)</td>
<td>0.0 (III/IV)</td>
<td>Unreported</td>
</tr>
<tr>
<td>Tebbetts, 2006</td>
<td>Prospective</td>
<td>Breast augmentation only</td>
<td>Allergan Style 410 Silicone</td>
<td>Silicone</td>
<td>50</td>
<td>97% at 3 yr</td>
<td>0.3 (total)</td>
<td>Unreported</td>
<td></td>
</tr>
<tr>
<td>Bengston et al., 2007</td>
<td>Prospective</td>
<td>Breast augmentation data extracted</td>
<td>Allergan Style 410 Silicone</td>
<td>Silicone</td>
<td>492</td>
<td>87% at 3 yr</td>
<td>1.9 (III/IV)</td>
<td>0.7</td>
<td>12.5</td>
</tr>
<tr>
<td>Cunningham, 2007</td>
<td>Prospective</td>
<td>Breast augmentation data extracted</td>
<td>Mentor MemoryGel Silicone</td>
<td>Silicone</td>
<td>551</td>
<td>88% at 3 yr</td>
<td>8.4 (III/IV)</td>
<td>0.5</td>
<td>15.1</td>
</tr>
<tr>
<td>Cunningham, 2007</td>
<td>Prospective</td>
<td>Breast augmentation data extracted</td>
<td>Mentor CPG Silicone</td>
<td>Silicone</td>
<td>551</td>
<td>91% at 2 yr</td>
<td>0.8 (III/IV)</td>
<td>0.0</td>
<td>9.8</td>
</tr>
<tr>
<td>Spear et al., 2007</td>
<td>Prospective</td>
<td>Breast augmentation data extracted</td>
<td>Inamed Silicone-Filled Silicone</td>
<td>Silicone</td>
<td>455</td>
<td>81% at 6 yr</td>
<td>14.8 (III/IV)</td>
<td>5.5</td>
<td>28.0</td>
</tr>
<tr>
<td>Hedén et al., 2009</td>
<td>Prospective</td>
<td>Breast augmentation data extracted</td>
<td>Allergan Style 410 Silicone</td>
<td>Silicone</td>
<td>112</td>
<td>8 yr (5–11 yr)</td>
<td>5.3 (III/IV all indications)</td>
<td>1.7 (total)</td>
<td>Unreported</td>
</tr>
<tr>
<td>Cunningham and McCue, 2009</td>
<td>Prospective</td>
<td>Breast augmentation data extracted</td>
<td>Mentor MemoryGel Silicone</td>
<td>Silicone</td>
<td>552</td>
<td>61% at 6 yr</td>
<td>9.8 (III/IV)</td>
<td>1.1</td>
<td>19.4</td>
</tr>
<tr>
<td>Walker et al., 2009</td>
<td>Prospective</td>
<td>Breast augmentation data extracted</td>
<td>Allergan Saline-Filled Silicone</td>
<td>Silicone</td>
<td>901</td>
<td>5 yr at 781 mo (20–97 mo)</td>
<td>97.2% at 5 yr</td>
<td>11.4 (III/IV)</td>
<td>6.8 at 5 yr</td>
</tr>
<tr>
<td>Jewell and Jewell, 2010</td>
<td>Prospective</td>
<td>Breast augmentation and reconstruction data</td>
<td>Allergan Style 410 Silicone</td>
<td>Silicone</td>
<td>118</td>
<td>10 yr at 117 mo (4–10 yr)</td>
<td>91.4% at 10 yr</td>
<td>10.8 at 10 yr</td>
<td>13.8 at 10 yr</td>
</tr>
<tr>
<td>Maxwell et al., 2012</td>
<td>Prospective</td>
<td>Breast augmentation data extracted</td>
<td>Allergan Style 410 Silicone</td>
<td>Silicone</td>
<td>492</td>
<td>72% at 6 yr</td>
<td>4.6 (III/IV)</td>
<td>5.0</td>
<td>19.4</td>
</tr>
<tr>
<td>Hammond et al., 2012</td>
<td>Prospective</td>
<td>Breast augmentation data extracted</td>
<td>Mentor CPG Silicone</td>
<td>Silicone</td>
<td>572</td>
<td>69% at 6 yr</td>
<td>2.4 (III/IV)</td>
<td>2.1</td>
<td>18.1</td>
</tr>
<tr>
<td>Stevens et al., 2012</td>
<td>Prospective</td>
<td>Breast augmentation data extracted</td>
<td>Sientra Silicone</td>
<td>Silicone</td>
<td>1116</td>
<td>5 years</td>
<td>8.8</td>
<td>2.0</td>
<td>16.6</td>
</tr>
<tr>
<td>Lista et al., 2013</td>
<td>Retrospective</td>
<td>Breast augmentation only</td>
<td>Allergan Style 410 Silicone</td>
<td>Silicone</td>
<td>440</td>
<td>13 months (4 days–10 yr)</td>
<td>1.8 (III/IV)</td>
<td>0.0</td>
<td>10.7</td>
</tr>
</tbody>
</table>
and Mallucci3 have suggested some specific indications for anatomically shaped implants, including (1) patients who want a natural appearance and an implant that “fits” their breast; (2) constricted lower pole of breast; (3) thoracic hypoplasia; (4) breast reconstruction; and (5) mild ptosis or pseudoptosis, although the rotation risk increases with increasing envelope laxity.

EVIDENCE ON DOUBLE CAPSULE AND LATE SEROMA

In recent years, there has been increased discussion about the relationship between double capsule and late seroma (Fig. 1) to breast augmentation surgery.89,95–97 The prevalence ranges from 0.88 to 1.84 percent.71,89,102,103 Hall-Findlay reviewed all patients that underwent breast augmentation or augmentation mastopexy since 1992 and noted that the phenomenon of double capsule and late seroma is relatively new.95 A total of 14 cases were identified, and all were related to the Allergan Biocell textured surface implant shells. They were observed in both round and anatomically shaped implants, and subglandular, subfascial, and submuscular locations.

In an effort to provide better guidance on the diagnosis and treatment of double capsule and late seroma, Bengston et al.96 presented a literature review and provided a consensus panel

Fig. 1. (Above) A 40-year-old woman presented 17 months after undergoing bilateral subglandular breast augmentation with textured, anatomically shaped silicone gel implants. She developed acute right breast swelling 10 days before presentation necessitating urgent surgery for bilateral implant exchange to smooth, round, silicone gel implants. (Below) Twelve-month postoperative view shows the appearance of the left breast with textured, anatomically shaped implant preoperatively and a smooth, round implant postoperatively.
recommendation. Late seroma was arbitrarily defined as a periprosthetic fluid collection occurring more than 1 year following breast augmentation. The literature review identified 13 cases, of which 12 involved textured, silicone implants. Implant details were unknown for the remaining case. Possible causes for late seroma included inflammatory conditions such as infection and hematoma, malignancy, trauma, and mechanical causes, which may be related to device characteristics. Patients with a nonresolving periprosthetic fluid collection should be evaluated further. Evaluation may involve radiologic imaging and examination of the periprosthetic fluid for cultures and cytology. Capsular biopsies may also be indicated. Treatment will depend on the suspected cause and may involve antimicrobial therapy, percutaneous drainage, or surgery for removal or exchange of implants with possible capsulectomy. Spear et al. described 25 patients treated for late seromas (28 implants) in a multicenter retrospective review. Treatment involved antibiotic therapy, ultrasound-guided aspiration, and surgery, and was successful in resolving 27 late seromas. Ninety-six percent of implants studied had a Biocell textured shell. There was only one patient included that had smooth, saline implants; however, they had two previous operations before placement of these implants. No cases were attributed to infection or malignancy.

The exact developmental mechanism and risk factors for double capsule and its relationship to late seroma are yet to be elucidated. It appears that textured implants are more commonly associated with development of both double capsule and late seroma compared with smooth implants. Although several authors have speculated that the Biocell texturization process may play a significant role in the development of double capsule

Fig. 2. (Above) A double capsule after breast augmentation with an Allergan Biocell textured implant. This patient presented with late seroma in the contralateral breast. (Below) A double capsule after breast augmentation–vertical scar mastopexy with a Mentor Siltex textured implant. This patient presented with grade III capsular contracture in the ipsilateral breast.
and late seroma, this may represent a reporting bias because most publications on this topic are from authors that have significant experience with Allergan implants. Double capsule has been observed with both Allergan Biocell and Mentor Siltex textured shell implants (Fig. 2). In fact, long-term reports from the premarket approval studies from Allergan,
Mentor,
and Sientra
all report seroma, with rates of up to 4.6 percent; however, many of these studies do not differentiate between early and late seroma. They also suffer from heterogeneous data sets, so it is difficult to identify causal relationships. Ultimately, the purported benefit of texturization in reducing capsular contracture rates should be weighed against the possible risks of double capsule and late seroma.

EVIDENCE ON ANAPLASTIC LARGE-CELL LYMPHOMA

There has been growing concern that breast implants are associated with the development of primary non-Hodgkin’s lymphoma of the breast, anaplastic large-cell lymphoma. Jewell et al. performed a systematic review of the literature for cases of CD30+ anaplastic lymphoma kinase–negative anaplastic large cell lymphoma with breast involvement (malignant cytology and/or malignant infiltration of the prosthetic tissue capsule) in women with breast implants. Eighteen published reports describing 27 cases of anaplastic large-cell lymphoma in proximity to silicone gel– or saline-filled breast implants were identified. They found that the most common

Fig. 3. Using an evidence-based approach to breast augmentation to integrate different surgical approaches and breast implants, good aesthetic results can be achieved and complications minimized. This patient underwent primary breast augmentation. For the surgical approach, either inframammary or transaxillary incision placement was combined with either subglandular or submuscular implant location. Either smooth round saline, smooth round cohesive silicone, or textured anatomically shaped implants were used.
Clinical presentation for breast-associated anaplastic large-cell lymphoma was unilateral breast swelling related to late (>1 year after implantation) periprosthetic fluid collection; the swollen breast was sometimes reported as painful and tender to the touch, but rarely with a mass or capsular contracture. Constitutional B symptoms (fever, weight loss, and night sweats) were rarely reported at presentation. None of the identified studies established a greater number of observed non-Hodgkin’s lymphoma cases in women with breast implants than expected in the general population of age-matched women. Another systematic review by Kim et al. examined the relationship between breast implants and anaplastic large-cell lymphoma or other non-Hodgkin’s lymphoma. This review produced 34 articles that included 29 cases of anaplastic large-cell lymphoma and seven cases of other non-Hodgkin’s lymphoma involving the breast. They proposed that a form of anaplastic large-cell lymphoma, which clinically behaves more like the less aggressive primary cutaneous form of anaplastic lymphoma kinase–negative anaplastic large-cell lymphoma rather than the more aggressive systemic form, may be associated with breast implants. Kim et al. used a structured expert consultation process to integrate the available information with expert opinion to provide guidance for management in various different clinical scenarios. More recently, Taylor et al. described five cases of anaplastic large-cell lymphoma in Australia. Both textured saline and silicone implants were implicated. There was a spectrum of disease severity, with some cases pursuing an aggressive clinical course. Additional

Fig. 4. Using an evidence-based approach to breast augmentation to integrate different surgical approaches and breast implants, good aesthetic results can be achieved and complications minimized. This patient underwent primary breast augmentation. For the surgical approach, either inframammary or transaxillary incision placement was combined with either subglandular or submuscular implant location. Either smooth round saline, smooth round cohesive silicone, or textured anatomically shaped implants were used.
research is required to better determine the epidemiology and relationship of anaplastic large-cell lymphoma to breast implants.108

CONCLUSIONS

Despite the publication of considerable outcome data, there is a lack of studies with a high level of evidence reflecting the modern process of breast augmentation to assist the plastic surgeon with making key decisions regarding surgical approach and implant selection. In the systematic reviews60 and meta-analyses,59,65,66 most randomized controlled trials and comparative studies were published before 2001. Since then, there has been increased recognition and acceptance of etiologic factors such as biofilm that significantly contribute to the formation of capsular contracture.29–31 There has also been increased recognition of the impact of the process of breast augmentation on outcomes.109,110 Examining studies published since 2000, key complication rates appear to be dramatically lower when compared with the past. It is difficult to determine the exact impact of the surgical approach, implant characteristics, and overall process of breast augmentation. Plastic surgeons should be familiar with the existing clinical evidence and evaluate its relevance to their practice. In combination with personal experience, the surgeon should formulate an evidence-based approach to breast augmentation to integrate different surgical approaches and implants. With this approach, good aesthetic results can be achieved and complications minimized (Figs. 3 through 5). Carefully reviewing

![Fig. 5](image-url)
the patient’s goals and the benefits and risks of certain aspects of breast augmentation surgery should be of paramount importance. The bottom line in decision making in breast augmentation is the negotiation between the potential for safer and better aesthetic results with the risks inherent in certain surgical approaches and implants.

Jamil Ahmad, M.D.

The Plastic Surgery Clinic
1421 Hurontario Street
Mississauga, Ontario L5G 3H5, Canada

drahamad@theplasticsurgeryclinic.com

REFERENCES

61. Strasser EJ. Results of subglandular versus subpector al augmentation over time: One surgeon’s observations. Aesthet Surg J. 2006;26:43–50.

